Calculus sample problems II for midterm test in Fall Semester

1. Let $\varepsilon>0$ be given, find $\delta>0$ such that $\left|x^{2}-4\right|<\varepsilon$ whenever $0<|x-2|<\delta$.
2. $\lim _{x \rightarrow 1} \frac{\sqrt{3+\sqrt[3]{x}}-2}{x-1}=$
3. $\lim _{x \rightarrow \infty} \sqrt[4]{x^{4}+x^{3}}-x=$
4. Let $f(x)=\left\{\begin{array}{l}x \sin \frac{1}{x}, x \neq 0 \\ c, x=0\end{array}\right.$. Find the value of c such that f is continuous at $x=0$.
5. Let $f(x)=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$. Does $f^{\prime}(0)$ exist? Prove your answer.
6. If $f(x)=x^{2}, g(x)=2 x$, find $(f g)^{\prime}(x),\left(f^{\prime}(g(x)),(f \circ g)^{\prime}(x)\right.$ and $(g \circ f)^{\prime}(x)$
7. Find the derivative of the function defined by $f(x)=\frac{x\left(\sin x^{2}\right)}{2 x+1}$.
8. Find $D \sin (\cos (\sin x))$.
9. Let $x+y+\sin \left(x y^{2}\right)=1$, find $\frac{d y}{d x}$.
10. Find the equation of the tangent line at the point $(1,1)$ to the graph of the equation $x^{2}+x y+y^{2}=3$.
11. Show that $|\sin x-\sin y| \leq|x-y|$.
12. Let A be the area of a circle of radius r. If r is changing with respect to time t, find the relation between $\frac{d r}{d t}$ and $\frac{d A}{d t}$.
13. Sketch the graph of the function $y=f(x)=x(x-4)^{3}$ and find possible points of inflection.
14. Find the maximum value of the function $f(x)=\frac{|x|}{\sqrt{(x-4)^{2}+9}}, x \in R$.
15. Find the maximum volume of those right circular cylinders inscribed in a sphere of radius 1 .
